13. ANALIZA REGIMULUI NESTAŢIONAR

În exploatare, instalațiile frigorifice deși se proiectează în general pentru un regim de lucru nominal, considerat staționar, funcționează preponderent în regim tranzitoriu sau nestaționar, ceea ce înseamnă că parametrii funcționali și de performanță prezintă o anumită variație în timp.

Câteva elemente care determină caracterul nestaționer al regimului de funcționare al instalațiilor frigorifice sunt următoarele:

- La pornire, temperaturile din instalație sunt foarte îndepărtate de cele nominale, și este nevoie de o perioadă de timp pentru ca treptat să se ajungă la distribuția nominală de temperaturi;
- La oprire, se manifestă tendința de egalizare a temperaturilor din diferitele părți ale instalației, ceea ce determină o variație în timp a parametrilor;
- Variațiile necesarului de frig din timpul funcționării determină modificarea în timp a parametrilor instalației;
- Variația diurnă a temperaturii aerului (sau apei de răcire a condensatorului) determină variația temperaturii, respectiv presiunii de condensare și de aici a celorlalți parametri, până la stabilirea unui nou regim de echilibru;
- Etc.

Programul CoolPack are și un modul care permite studiul funcționării în regim nestaționar a unei instalații frigorifice care deservește o cameră frigorifică. Sistemul de automatizare (control) a funcționării instalației este de tipul on/off adică pornit/oprit, ceea ce înseamnă că dacă în camera frigorifică se atinge temperatura minimă admisă, atunci instalația frigorifică este oprită, iar temperatura din cameră este mai mare decât cea maximă admisă, atunci instalația este pusă în funcțiune.

Lansarea în execuție a programului de analiză a funcționării în regim nestaționar a instalației se realizează din meniul principal, prin alegerea opțiunii "Dynamic" - "dinamic" (tranzitoriu, nestaționar). Meniul care se deschide astfel are o singură opțiune disponibilă și anume "Cooling of a room or an object (ON/OFF-Control)" adică "Răcirea unei incinte sau a unui corp (Control de tip Pornit/Oprit)". Execuția acestui modul de calcul este determinată de apăsarea butonului "Dynamic Cooling" adică "Răcire dinamică", așa cum se observă în imaginea alăturată.

<u>File</u> <u>S</u> ettings	s <u>O</u> ptions <u>H</u> elp			
ПЭЛ	Refrigeration Utilities CoolTools: Cycle analysis CoolTools: Design CoolTools: Evaluation CoolTools: Auxiliary Dynamic			
A 击 ₽	K			
N ? ê				
	Dynamic Cooling			
	i ransient simulation tools			
Program	s used for investigations on transient problems.			
1)) Cooling of a room or an object (ON/OFF-Control).			
	Opțiunea Dynamic a programului CoolPack			

Ca efect, se va afișa meniul principal al programului de analiză a funcționării în regim nestaționar a instalației frigorifice, conform figurii.

e Plot Edit Draw Show Format Help	p	
Л 🗅 🛩 🖬 🖬 🗇 🖤 🔍	. < < ⊕ →	
Conteners Selver Output Initial Control Selver Output Initial Control Selver Output Initial Control Load Exceptosize I end (sec) Selver Selve		

Meniul principal al programului de analiză a funcționării în regim nestationar a instalatiilor frigorifice

Se observă că acest ecran are practic două zone:

- În fereastra din dreapta se vor reprezenta grafic curbele de variație a parametrilor de funcționare și de performanță ai instalației;
- În fereastra de configurare, din stânga se vor defini condițiile de funcționare ale instalației:
 - -"Initial" - "Condiții inițiale";
 - "Control": _
 - "Load" "Încărcătura" camerei frigorifice; -
 - "Evaporator" "Vaporizator"; -
 - -
 - "Compressor" "Compresor"; "Condenser" "Condensator"; -
 - "Solver" "Rezolvare"; -
 - "Output" "Ieșire Rezultate".

Opțiunile ferestrei "Initial" - "Condiții inițiale" sunt prezentate în imaginea alăturată.

Compressor Cond Initial Control	denser Load	Solver Outp Evaporato	ut or	
T start [sec]: T end [sec]:		0 86400		
Temperature of load (°C): 20				
R1194a, CH2FCF3, 1,1,1,2-tetrafluoroethane R11, CCI3F, Trichlorofluoromethane R113, CCI2FCCIF2, Trichlorotrifluoroeth R114, CCIF2CCIF2, Dichlorotetrafluoroe R1150, CH2=CH2, Ethene (ethylene) R12, CCI2F2, Dichlorotrifluoromethane R123, CHCI2F3, Dichlorotrifluoroethar R1270, CH3CH=CH2, Propene (propyle R13, CCIF3, Chlorotrifluoromethane R134a, CH2FCF3, 1,1,1,2-tetrafluoroet				
T critical [°C]: 101.10				
Start	Sto	op 🛛		

Fereastra "Initial" - "Condiții inițiale"

Semnificația elementelor ferestrei este următoarea:

- Momentul inițial al simulării T start [sec];
- Momentul final al simulării T end [sec];
 - Cele două valori se pot introduce direct în secunde, sau prin apăsarea butoanelor "..." se pot introduce în zile "days", ore "hours", minute "minutes", secunde "seconds" și milisecunde "miliseconds";
- Temperatura inițială a încărcăturii camerei frigorifice Temperature of load [°C];
- Agentul frigorific Refrigerant;
 - Pentru agentul selectat este indicată valoarea temperaturii critice T critical [°C].

Fiecare fereastră de configurare cuprinde butoanele "Start" pentru începerea simulării și "Stop" pentru oprirea simulării.

Opțiunile ferestrei "Control" sunt prezentate în imaginea alăturată.

Compres	sor C	onden	ser	Se	lver	Output
Initial	Cont	rol [oac		Eva	aporator
Max tem Min temp	peraturi perature	e of loa of loa	1*] be 0*] b	C]: ;]:	0	

Fereastra "Control"

Semnificația parametrilor acestei ferestre este următoarea:

- Temperatura maximă admisă a încărcăturii Max temperature of load [°C];
- Temperatura minimă admisă a încărcăturii Min temperature of load [°C].

 Compressor
 Condenser
 Solver
 Output

 Initial
 Control
 Load
 Evaporator

 Mass [kg]:
 Image: Control
 Image: Control
 Image: Control

 Mass [kg]:
 Image: Control
 Image: Control
 Image: Control

 Specific heat [kJ/kg-K]:
 Image: Control
 Image: Control
 Image: Control

 UA-value to surroundings [W/K]:
 Image: Control
 Image: Control
 Image: Control

 Internal load [W]:
 Image: Control
 Image: Control
 Image: Control
 Image: Control

 Mean value [*C]:
 Image: Control
 Image: Control
 Image: Control
 Image: Control

 Amplitude [K]:
 Image: Control
 Image: Control
 Image: Control
 Image: Control

Opțiunile ferestrei "Load" sunt prezentate în imaginea alăturată.

Semnificația parametrilor ferestrei este următoarea:

- Cantitatea (masa) de produse din camera frigorifică Mass [kg];
- Căldura specifică a produselor Specific heat [kJ/kg-K];
- Produsul kS pentru mediul înconjurător al camerei frigorifice UA-value to surroundings [W/K];
- Sarcina termică a surselor interne de căldură Internal load [W];
- Temperaturile mediului înconjurător al camerei frigorifice Temperature of surroundings (sine)
 - Valoarea medie Mean value [°C];
 - Valoarea amplitudinii Amplitude [K].

Opțiunile ferestrei "Evaporator" sunt prezentate în imaginea alăturată.

Compressor Condenser Solver Output
Initial Control Load Evaporator
Superheat [K]: 🔟
Specify UA value
UA [W/K]: 1000
\bigcirc Specify Q $_{dim}$ and $\Delta T _{dim}$
Q _{dim} [W]: 0
∆T _{dim} [K]: 10

Fereastra "Evaporator"

Semnificația parametrilor ferestrei este următoarea:

- Gradul de supraîncălzire Superheat [K];
- Produsul kS UA [W/K];
- Sarcina termică pentru dimensionarea vaporizatorizatorului Q_{dim} [W];
- Diferența medie logaritmică pentru dimensionarea vaporizatorizatorului ΔT_{dim} [K];

Se va alege la introducerea datelor, una dintre variantele kS, respectiv Q_{dim} și ΔT_{dim} , cu ajutorul cărora în final se va calcula tot produsul kS. Termenul "Specify" înseamnă "Specifică sau precizează" și se referă la una din cele două opținui.

Opțiunile ferestrei "Compressor" sunt prezentate în imaginea alăturată.

Initial	Control	Load	Evaporator		
Compres	sor Cond	lenser 9	Solver Output		
Isentropio	c efficiency	ν, η _{is} [0-1]			
Volumetric efficiency, ¹ / _{VOI} [0-1]: 0.85					
Displace	ment [m3/ł	n]:	4		
Percent	of W _{comp}	rejected	as heat (0-100): 15		

Fereastra "Compressor"

Semnificația parametrilor ferestrei este următoarea:

- Randamentul izentropic $\eta_{is}[0-1]$;
- Coeficientul de debit (randamentul volumic) η_{vol} [0-1];
- Cilindreea orară (debitul volumic descris de piston) Displacement [m³/h];
- Factorul de răcire (fracția din puterea compresorului evacuată sub formă de căldură Percent of W_{comp} rejected as heat [0-100].

Opțiunile ferestrei "Condenser" sunt prezentate în imaginea alăturată.

Initial Control Loa	d Evaporator
Compressor Condenser	Solver Output
Subcooling [K]:	
Specify UA value	
UA [W/K]: 1000	
C Specify Q_{dim} and Δ	T _{dim}
Q _{dim} [W]: 0	
∆T _{dim} [K]: 10	
Temperature of surrour	ndings (sine):
Mean value [°C]:	20
Amplitude [K]:	5

Fereastra "Condenser"

Semnificația parametrilor ferestrei este următoarea:

- Gradul de subrăcire Subcooling [K];
- Produsul kS UA [W/K];
- Sarcina termică pentru dimensionarea condensatorului Q_{dim} [W];
- Diferența medie logaritmică de temperatură pentru dimensionarea condensatorului
 ΔT_{dim} [K];
 - Ca și în cazul vaporizatorului, se alege una dintre kS, respectiv Q_{dim} și T_{dim} ;
- Temperaturile mediului înconjurător al condensatorului Temperatures of surroundings (sine);
 - Valoarea medie Mean value [°C];
 - Valoarea amplitudinii Amplitude [K].

Opțiunile ferestrei "Solver" sunt prezentate în imaginea alăturată.

Initial	Co	ontrol	Load	∃ Ev	aporator
Compres	sor	Cond	enser	Solver	Output
Max. tin	ne st	ep (sea	:	1000	
Relative	e em	or:		0.0001	_
Мах ро	ints (onacu	irve: [20000	
	-				

Fereastra "Solver"

Semnificația parametrilor ferestrei este următoarea:

- Valoarea maximă a pasului de timp Max. time step [sec];
- Eroarea relativă Relative error;
- Numărul maxim de puncte pe o curbă (dintre cele care urmează să fie trasate).

Initial (Control	Load	Evaporator
Compressor	Conder	iser Solv	er Output
Energy cor	nsumption		
	[kJ]	[kWh]	Mean [W]
W _{comp} :	0	0	0
Q _e :	0	0	0
COPmean	0		

Opțiunile ferestrei "Output" sunt prezentate în imaginea alăturată.

Fereastra "Output"

Semnificația parametrilor ferestrei este următoarea:

- Consumul energetic Energy consumtion:
 - Consumul realizat de compresor W_{comp} (lucru mecanic) [kJ] ; (energie electrică) [kWh]; (puterea medie) Mean [W];
 - Consumul realizat de vaporizator Q_e (căldură) [kJ]; (energie termică) [kWh]; (sarcina termică medie) Mean [W];
- Eficiența frigorifică COP_{mean}.

După introducerea tuturor datelor de intrare care permit configurarea condițiilor de simulare în regim nestaționar, dorite, și apăsarea butonului "Start", disponibil în toate ferestrele prezentate anterior, se va realiza automat calculul parametrilor de lucru și de performanță ai instalației, iar variația acestora poate fi reprezentată grafic în fereastra din dreapta a interfeței programului.

Selecția parametrilor care sunt reprezentați grafic este posibilă în fereastra care se deschide în partea de jos a interfeței, conform imaginii alăturate.

✓ T_load (°C)	T_a Condenser [*C]	Q_comp [W]
🗌 T_e [°C]	🗆 Q_a [W]	□ W_comp [W]
🗌 T_c [°C]	🗌 Q_e [W]	🗆 COP
🗌 T_a Load (°C)	🗆 Q_c [W]	🗌 On/Off

Parametrii a căror variație poate să fie reprezentată grafic

Semnificația acestor parametri este următoarea:

- Temperatura încărcăturii (produselor) T_load [°C];
- Temperatura de vaporizare T_e [°C];
- Temperatura de condensare T_c [°C];
- Temperatura mediului înconjurător (ambiant) al camerei frigorifice T_a Load [°C];
- Temperatura mediului înconjurător (ambiant) al condensatorului T_a Condenser [°C];
- Sarcina termică a pătrunderii de căldură prin pereții izolați ai camerei frigorifice -Q_a [W];
- Sarcina termică a vaporizatorului (puterea frigorifică a instalației) Q_e [W];
- Sarcina termică a condensatorului Q_c [W];
- Sarcina termică degajată de compresor Q_comp [W];
- Puterea de comprimare W_comp [W];
- Eficiența frigorifică COP;
- Pornit/Oprit On/Off.

Câteva exemple ale variației unor parametri sunt prezentate în continuare:

După o primă perioadă de pornire, când se realizează o răcire continuă a produselor, se observă că alternează perioade de răcire, când instalația funcționează, cu perioade de încălzire, când instalația este oprită. Între orele 9:00 și 21:00 ale simulării, instalația a funcționat continuu, deoarece acest interval corespunde cu valorile maxime ale temperaturii mediului înconjurător (ambiant) al camerei frigorifice, respectiv cu sarcini termice mari ale pătrunderii de căldură prin pereții izolați ai camerei frigorifice.

Variația temperaturii mediului înconjurător al camerei frigorifice, influențează curba de variație a sarcinii termice a pătrunderilor de căldură prin pereții acesteia, respectiv, variația temperaturii produselor din cameră.

13. Analiza regimului nestaționar - 9 -

Curba de variație a sarcinii termice a pătrunderii de căldură prin pereții camerei frigorifice este influențată de variația temperaturii mediului înconjurător al acesteia, ceea ce poate fi observat prin analiza comparativă a celor două curbe, dar și de calitatea izolației, influență care se poate studia prin executarea programului pentru valori diferite ale parametrului kS al camerei frigorifice.

Pentru temperatura de vaporizare se observă aceeași alură de variație ca și pentru temperatura preduselor. La oprirea instalației se constată o creștere rapidă a acestei temperaturi, iar la repornire o scădere rapidă a acesteia.

Sarcina termică a vaporizatorului este influențată de temperaturile produselor și de vaporizare.

Temperatura mediului înconjurător al condensatorului influențează variația temperaturii de condensare.

Alura curbei de variație a temperaturii de condensare este determinată de variația temperaturii ambiante a condensatorului. Valorile mai scăzute ale acestei mărimi corespund perioadelor de oprire a instalației.

Sarcina termică a condensatorului este influențată de variația temperaturilor de condensare, respectiv a mediului înconjurător pentru condensator.

Alura curbei de variație a puterii de comprimare depinde direct proporțional de diferențele dintre temperaturile de condensare și de vaporizare.

Alura curbei sarcinii termice degajate de compresor este identică cu cea a puterii absorbite de acesta.

Eficiența frigorifică este calculată și reprezentată grafic prin raportul dintre puterea frigorifică a instalației și puterea de comprimare.

Acestă diagramă prezintă perioadele în care instalația a funcționat, respectiv a fost oprită.

Programul permite și reprezentarea grafică simultană a mai multor curbe, pe același grafic.